4.7 Article

ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal

期刊

CHEMICAL ENGINEERING JOURNAL
卷 415, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.129002

关键词

Uranium; Removal; Adsorption; Photoreduction; Wastewater

资金

  1. Hunan Provincial Natural Science Foundation for Excellent Young Scholars [2020JJ3028]
  2. National Natural Science Foundation of China [51704170]
  3. Key R&D Program of Hunan Province [2018SK2029]
  4. Postdoctoral Science Foundation of China [2017 M612569]
  5. Research and Innovation Program for postgraduates in Hunan Province [CX20200923]

向作者/读者索取更多资源

The ZnFe2O4/g-C3N4 (ZFOCN) step-scheme heterojunction synthesized in this study showed excellent performance for both adsorption and photocatalysis of U(VI) removal in aqueous solution. The adsorption process of U(VI) by ZFOCN and its photoreduction mechanism were investigated, and the results indicated that ZFOCN has strong visible light absorbability and a narrow band gap, leading to high removal efficiency and stability for U(VI).
The reduction of soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) by photocatalytic method is an emerging and effective approach to remove U(VI) from aqueous solution. In this study, the ZnFe2O4/g-C3N4 (ZFOCN) step-scheme (S-scheme) heterojunction was synthesized and used as both adsorbent and photocatalyst for remove U(VI). The batch adsorption experiments showed that the adsorption process of U (VI) by ZFOCN matches the Langmuir isotherm and pseudo-second-order models, and its maximum Langmuir adsorption capacity (qmax) for U(VI) reached 699.3 mg/g at pH 5.0. In addition, ZFOCN exhibited superior photocatalysis properties for reduction of U(VI) under visible LED light irradiation, and its optimal removal capacity for U(VI) via simultaneous adsorption and photoreduction achieved up to 1892.4 mg/g, with the removal rate being 94.62%, which is significantly higher than the physicochemical adsorption. Furthermore, the photoreduction mechanism of U(VI) by ZFOCN is explored by FT-IR, XPS, XRD, EPR and DFT calculations, which indicated that the excellent photocatalysis performance of ZFOCN was mainly due to its strong visible light absorbability and narrow band gap. The U(VI) could be captured on the surface of ZFOCN, and then reduced to U (IV) under visible LED light illumination. Moreover, the removal capacity of U(VI) by ZFOCN remained over 90% after five cycles of tests, and it has negligible decrease in the presence of co-existing metal ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据