4.7 Article

An overview of the use of nanozymes in antibacterial applications

期刊

CHEMICAL ENGINEERING JOURNAL
卷 418, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.129431

关键词

Nanozymes; Antibacterial; Mechanisms; Catalytic performances; Biosafety

资金

  1. Strategic Priority Research Program of Chinese Academy of Sciences [XDB36000000]
  2. National Basic Research Program of China [2020YFA0710702, 2016YFA2021600]
  3. National Natural Science Foundation of China [51822207, 51772292, U1932112, 51772293]
  4. Chinese Academy of Sciences Youth Innovation Promotion Association [2013007]
  5. Beijing Natural Science Foundation [2202064]

向作者/读者索取更多资源

The emergence of nanozymes as promising candidates for combating bacteria is driven by their combination of advantages from nanomaterials and natural enzymes, resulting in low cost, good stability, controllable size, easy preparation, multifunctionality, and superior catalytic activity, making them potent antibacterial agents with broad-spectrum antibacterial abilities and biocompatibility.
Topics of bacterial resistance have attracted remarkable scientific interests. Bacterial infection-related diseases are major public safety issues that lead to millions of deaths annually. Therefore, it is urgent to develop novel, high efficiency, and bacteria-binding antibacterial agents. As far as now, the emergence of nanozymes has been presented as promising candidates to combat bacteria. Combining the advantages of nanomaterials and natural enzymes, such nanozymes are generally low cost, good stability, controllable size, easy-of-preparation, multifunctionality, and superior catalytic activity. As the potent antibacterial agents, nanozymes possess satisfying broad-spectrum antibacterial abilities and biocompatibility. Herein, we timely summarize the recent research progress of different kinds of nanozyme-based antibacterial agents. Additionally, the relevant antibacterial mechanisms of nanozymes and the roles of physicochemical properties, external stimuli, and surface modifications on their catalytic performances and biosafety are also discussed. Finally, current challenges and the future perspectives are covered to stimulate new strategies and more effective nanozyme-based antibacterial agents for preclinical translations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据