4.7 Article

Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes

期刊

CHEMICAL ENGINEERING JOURNAL
卷 414, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.128702

关键词

Solid polymer electrolytes; MOFs; Fire-safety; High lithium transfer number

资金

  1. IMDEA Materials STRUBAT Project

向作者/读者索取更多资源

This study utilizes metal-organic frameworks as additives to modify solid polymer electrolytes, resulting in electrolytes with enhanced performance and safety. The research demonstrates the potential application of this novel electrolyte in solid-state batteries.
Electrochemical performance, mechanical properties as well as fire safety are crucial factors to evaluate solid polymer electrolytes (SPEs). In this article, we purposely choose metal-organic frameworks (HKUST-1 MOFs) as the multifunctional additive to modify the PEO-based SPEs. The PEO-LiTFSI-10HKUST-1 MOFs electrolyte (PL10HM) has shown enhanced ionic conductivity, which reaches 2.4 ? 10- 3 S cm-1 at 80 ?C. With the HKUST-1 MOFs, the electrochemical stability window and lithium-ion transfer number were largely enhanced as compared to the PEO-LiTFSI electrolyte (PL). The crystal structure, morphology, thermal stability, micro and macro mechanical properties were characterized systematically. The reduction in peak heat release rate (pHRR) of 42% was realized, which means the PL10HM possesses higher fire safety. The as-fabricated Li/PL10HM/LiFePO4 battery exhibited a simultaneous good rate capability up to 1C and highly stable cyclability for over 100 cycles. These results demonstrate the unique characteristics of such a novel electrolyte membrane, potentially enabling the high performance, safe use in the practical solid-state batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据