4.7 Article

Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study

期刊

CHEMICAL ENGINEERING JOURNAL
卷 414, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.128857

关键词

Single atom; Electrocatalyst; Graphyne

资金

  1. Special Fund of Tianshui Normal University, China [CXJ2020-08]
  2. National Natural Science Foundation of China [21603109, 51779230, 52000163]
  3. Henan Joint Fund of the National Natural Science Foundation of China [U1404216]
  4. Key Project of Natural Science Foundation of China-Xinjiang Joint Fund [U1803241]
  5. Natural Science Foundation of Henan Province [202300410423]
  6. Shaanxi Provincial Education Department [20JK0676]
  7. Henan Department of Science and Technology, China [182102310609]
  8. National Research Foundation of Korea (NRF) - Ministry of Science, ICT, & Future Planning [2016R1E1A1A01940995]

向作者/读者索取更多资源

This study explores the electrocatalytic potential of different transition metals in the CO2 reduction reaction, and finds that embedding Cr into graphyne is the most efficient option for producing CH4. Additionally, it is discovered that CO2 is more advantageous for the hydrogen evolution reaction to preferentially occupy the activation site than H2 on Cr-graphyne. These results provide a new path for the development of low-potential electrocatalysts with high activity and selectivity for CO2 reduction.
The design of advanced electrocatalysts is key for capturing chemically inert CO2 for conversion into value-added products (e.g., fuel) and to effectively mitigate greenhouse gas emissions and energy crisis with high standards of sustainability. However, control of product selectivity at a low overpotential is a challenge. In this work, the electrocatalyzing potential of different single transition metals (including Ti, V, Cr, and Mn) was explored in the CO2 reduction reaction (CRR) based on density functional theory (DFT). The efficiency of CRR was examined for each transition metal in relation to their reaction intermediates (COOH, CO, and CHO) after being embedded into graphyne (GY) systems. Accordingly, embedding Cr into GY is the most efficient option for the CRR to produce CH4 with an ultralow limiting potential of -0.29 V based on reaction energies and barriers. For the hydrogen evolution reaction (HER), CO2 is more advantageous to preferentially occupy the activation site than H2 on CrGY to reflect their differences in the adsorption energy (-0.83 vs. -0.38 eV). At the same time, Cr-GY can effectively inhibit the HER in the CRR process with the limiting potential of HER as -0.34 V. The overall results of this research are expected to deliver a new path for the development of low-potential electrocatalysts with high activity and selectivity for reduction of CO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据