4.7 Article

Tailoring Lewis acidic metals and SO4 2?functionalities on bimetallic Mn-Fe oxo-spinels to exploit supported SO4?? in aqueous pollutant fragmentation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 413, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.127550

关键词

Oxo-spinel; MnXFe3-XO4; Radical transfer; OH; SO4?; Pollutants

资金

  1. Ministry of Science and ICT
  2. National Research Foundation of South Korea [NRF-2020R1A2C2004395]
  3. Korea Institute of Science and Technology (KIST) [2V08450]

向作者/读者索取更多资源

The generation of SO4?? anchored on metal oxides through radical transfer is promising for decomposing refractory contaminants in water. By adjusting the metal compositions and Lewis acidic strength, the production of SO4?? can be optimized to increase the degradation rate of pollutants.
Generation of SO4?? anchored on metal oxides via radical transfer from ?OH to surface SO42? functionality (?OH ? SO4?? ) is singular, unraveled recently, and promising to decompose aqueous refractory contaminants. The core in furthering supported SO4?? production is to reduce the energy required to accelerate the rate-determining step of the ?OH ? SO4?? (?OH desorption), while increasing the collision frequency between the ?OH precursors (H2O2) and H2O2 activators (Lewis acidic metals) or between SO42? -attacking radicals (?OH) and supported SO4?? precursors (SO42? ). Herein, Mn-substituted Fe3O4 oxo-spinels (MnXFe3-XO4; MnX) served as reservoirs to accommodate the Lewis acidic Fe/Mn and SO42?, whose properties were tailored by altering the metal compositions (X). The production of supported SO4?? via the ?OH ? SO4?? was of high tangibility, as confirmed by their electron paramagnetic resonance spectra coupled with those simulated. A concave trend was observed in the plot of the Lewis acidic strength of Fe/Mn versus X of MnX with the minimum at X - 1.5. Hence, Mn1.5 could expedite ?OH liberation from the surface most proficiently and therefore exhibited the greatest initial H2O2 scission rate, as corroborated by its lowest energy barrier needed for activating the ?OH ? SO4?? . Meanwhile, a volcano-shaped trend was found in the plot of SO42? concentration versus X of MnX (other than Mn3). This could tentatively increase the collision frequency between ?OH and SO42? on the surface of Mn1.5, as partially substantiated by its second largest pre-factor among the catalysts. Therefore, Mn1.5 exhibited the highest phenol consumption rate (-rPHENOL, 0) among the catalysts, which was - 20-fold larger than those for SO42? -modified Fe2O3 and NiO, which we reported previously. Mn1.5 also outperformed other catalysts in recycling phenol degradation, fragmenting another pollutant (aniline), and mineralizing phenol/aniline.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据