4.7 Article

Co-Mn catalysts for H2 production via methane pyrolysis in molten salts

期刊

CHEMICAL ENGINEERING JOURNAL
卷 414, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.128730

关键词

H-2 production; Co-Mn catalyst; Molten salt; Methane pyrolysis

资金

  1. ExxonMobil Research Engineering [EM11231.TO3]
  2. General Sir John Monash Foundation

向作者/读者索取更多资源

The study investigates the production of CO2-free H2 from natural gas through methane pyrolysis in molten salts, identifying mixed Co-Mn catalysts as highly promising. Increasing the molar Co:Mn ratio from zero to two can enhance CH4 conversion rates. Results show that Co-rich catalysts inhibit interactions between the support and the active phase, leading to stable performance and carbon-free surfaces.
A promising production route for near CO2-free H-2 from natural gas is methane pyrolysis in molten salts. During a screening of catalysts (containing La, Ni, Co and Mn) as particle suspensions in molten NaBr-KBr at 850 degrees C - 1000 degrees C, mixed Co-Mn catalysts were identified as being highly promising owing to their stability at pyrolysis conditions and fast kinetics. The catalysts, which contained Co-Mn nanocrystals (similar to 8-9 +/- 1 nm) that were prepared by colloidal chemistry were further tested in-depth, and their performance with varying molar Co:Mn ratios, particle sizes and temperatures were examined. The increase of the molar Co:Mn ratio from zero to two increased the CH4 conversion at 1000 degrees C from 4.8% to 10.4% for the smallest catalyst size range. Furthermore, we observed for all tested Co-Mn catalysts a stable performance over ca. 24 h of methane pyrolysis at 1000 degrees C and product selectivities for H-2 near unity. While the Co-lean particles coked, the surface of the Co-rich particles remained largely carbon-free, and an increase in the Co-content was found to inhibit interactions between the support and the active phase (e.g. inhibited CoAl2O4 and MnAl2O4 formation). The rigorous procedure for the catalyst testing presented in this work enables the field to further investigate the use of catalysts for this process, and the insights gained from experiments with particle suspensions can be applied to the design of structured packings for an industrial-scale process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据