4.8 Review

Astrocyte-neuron metabolic cooperation shapes brain activity

期刊

CELL METABOLISM
卷 33, 期 8, 页码 1546-1564

出版社

CELL PRESS
DOI: 10.1016/j.cmet.2021.07.006

关键词

-

资金

  1. Centre National de la Recherche Scientifique (CNRS)
  2. Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA)
  3. Agence Nationale de la Recherche [ANR 2011 MALZ-0003 MetALZ, ANR-18-C816-0008-03 ADORASTrAU]
  4. Association France Alzheimer
  5. Fondation de France
  6. Fondation Alzheimer
  7. Infrastructure de Recherche Translationnelle pour les Biotherapies en Neurosciences [NeurATRIS ANR-11-INBS-0011]
  8. Agencia Estatal de Investigacion [PID2019-105699RB-I00/AEI/10.13039/501100011033, RED2018-102576-T]
  9. Instituto de Salud Carlos III [CB16/10/00282]
  10. Junta de Castilla y Leon [CSI151P20, CLU-2017-03]
  11. Ayudas Equipos Investigacion Biomedicina 2017 Fundacion BBVA
  12. Fundacion Ramon Areces

向作者/读者索取更多资源

The brain has minimal energy reserves and relies on precise coordination between neurotransmission and energy metabolism. Different types of neural cells display unique metabolic signatures, necessitating intercellular exchange of metabolites to sustain brain function. Disruption of this metabolic cooperation may lead to neurological diseases, highlighting the importance of innovative therapies to preserve brain energetics.
The brain has almost no energy reserve, but its activity coordinates organismal function, a burden that requires precise coupling between neurotransmission and energy metabolism. Deciphering how the brain accomplishes this complex task is crucial to understand central facets of human physiology and disease mechanisms. Each type of neural cell displays a peculiar metabolic signature, forcing the intercellular exchange of metabolites that serve as both energy precursors and paracrine signals. The paradigm of this biological feature is the astrocyte-neuron couple, in which the glycolytic metabolism of astrocytes contrasts with the mitochondrial oxidative activity of neurons. Astrocytes generate abundant mitochondrial reactive oxygen species and shuttle to neurons glycolytically derived metabolites, such as L-lactate and L-serine, which sustain energy needs, conserve redox status, and modulate neurotransmitter-receptor activity. Conversely, early disruption of this metabolic cooperation may contribute to the initiation or progression of several neurological diseases, thus requiring innovative therapies to preserve brain energetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据