4.8 Article

Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming

期刊

CELL METABOLISM
卷 33, 期 10, 页码 2040-+

出版社

CELL PRESS
DOI: 10.1016/j.cmet.2021.09.002

关键词

-

资金

  1. NIH [P20GM135004, R01CA213990, P01CA163223]
  2. Kentucky Lung Cancer Research Program
  3. National Natural Science Foundation of China [81930079]

向作者/读者索取更多资源

The study reveals that tumor-derived exosomes can polarize macrophages towards an immunosuppressive phenotype through NF-kB and glycolytic reprogramming, and are associated with lactate, GLUT-1, and YKT6 factors, further promoting tumor metastasis.
One of the defining characteristics of a pre-metastatic niche, a fundamental requirement for primary tumor metastasis, is infiltration of immunosuppressive macrophages. How these macrophages acquire their phenotype remains largely unexplored. Here, we demonstrate that tumor-derived exosomes (TDEs) polarize macrophages toward an immunosuppressive phenotype characterized by increased PD-L1 expression through NF-kB-dependent, glycolytic-dominant metabolic reprogramming. TDE signaling through TLR2 and NF-KB leads to increased glucose uptake. TDEs also stimulate elevated NOS2, which inhibits mitochondrial oxidative phosphorylation resulting in increased conversion of pyruvate to lactate. Lactate feeds back on NF-KB, further increasing PD-L1. Analysis of metastasis-negative lymph nodes of non-small-cell lung cancer patients revealed that macrophage PD-L1 positively correlates with levels of GLUT-1 and vesicle release gene YKT6 from primary tumors. Collectively, our study provides a novel mechanism by which macrophages within a pre-metastatic niche acquire their immunosuppressive phenotype and identifies an important link among exosomes, metabolism, and metastasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据