4.6 Article

Experimental investigation of heat transfer enhancement and viscosity change of hBN nanofluids

期刊

EXPERIMENTAL THERMAL AND FLUID SCIENCE
卷 77, 期 -, 页码 272-283

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2016.04.024

关键词

Nanofluid; Colloid; Boron nitride; Thermal conductivity; Viscosity; Heat transfer enhancement

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK), under the grant of the 1001 Program [111M177]

向作者/读者索取更多资源

Hexagonal boron nitride (hBN) is a highly stable dielectric ceramic material that exhibits versatile properties such as, exceptionally high thermal conductivity and good chemical inertness. Due to its layered hexagonal crystal structure, hBN is the softest form among the other polymorphs of BN. Preparation, stability and thermophysical properties of hBN containing DI water, ethylene glycol (EG) and EG-DI water mixture (by volume 50%) based nanofluids are investigated. For this purpose a series of well dispersed, stable nanofluids, containing hBN nanoparticles with a mean diameter of 70 nm, are produced with a two-step method, relying on ultrasonication and use of surface active materials such as sodium dodecyl sulfate (SDS) and polyvinyl pyrrolidone (PVP). The effect of these surfactants on the base fluids' thermophysical properties is measured. The stability is evaluated by quantitative methods such as, time dependent zeta potential, and thermal conductivity measurements. Morphological characterization of nanofluids is completed by qualitative methods such as, SEM (Scanning Electron Microscopy) and TEM (Transmission. Electron Microscopy). The thermal conductivity enhancement of nanofluids, with particle volume concentration varying between 0.03% and 3%, is investigated experimentally in accordance with their increase in viscosity. It is observed that the hBN nanofluids have remarkably higher thermal conductivity values than their corresponding base fluids, depending on the volume concentration of dispersed nanoparticles. Moreover, water based hBN nanofluids with relatively dilute particle suspensions, exhibits significant increase in thermal conductivity with respect to the viscosity increase. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据