4.3 Article

Differential regional cerebral blood flow reactivity to alterations in end-tidal gases in healthy volunteers

出版社

SPRINGER
DOI: 10.1007/s12630-021-02042-x

关键词

anesthesia; carbon dioxide; cerebral blood flow; delirium; oxygen; postoperative complications

资金

  1. Anesthesia Oversight Committee at the University of Manitoba

向作者/读者索取更多资源

Anesthesia leads to changes in end-tidal respiratory gases which result in vasoactive changes in regional cerebral blood flow. By using pCASL to compare vasoconstriction and vasodilation ratios, we can better understand the changes in cerebral blood flow during anesthesia and potentially identify individuals at risk of postoperative delirium.
Purpose Anesthesia is associated with alterations in end-tidal (ET) respiratory gases from the awake state. These alterations result in marked vasoactive changes in regional cerebral blood flow (rCBF). Altered regional cerebrovascular reactivity (rCVR) is linked to neurologic dysfunction. We examined these differences in reactivity from prior work by focusing on the ratio of vasoconstriction with hyperoxia/hypocapnia (HO/hc):vasodilation with hypercapnia (HC) using magnetic resonance imaging pseudo-continuous arterial spin labelling (pCASL) to measure rCBF and compare rCVR The distribution and magnitude of these ratios could provide insights into rCBF during clinical anesthesia and inform future research into the origins of postoperative delirium (POD). Methods Ten healthy subjects underwent cerebral blood flow (CBF) studies using pCASL with computer-controlled delivery of ET gases to assess flow effects of hyperoxia, hypercapnia, and hyperoxia/hypocapnia as part of a larger study into cerebrovascular reactivity. The vasoconstrictor stimulus was compared with the vasodilator stimulus by the ratio HO/hc:HC. Results Hyperoxia minimally decreased whole brain CBF by - 0.6%/100 mm Hg increase in ETO2. Hypercapnia increased CBF by +4.6%/mm Hg carbon dioxide (CO2) and with HO/hc CBF decreased by - 5.1%/mm Hg CO2. The brain exhibited markedly different rCVR-regional HO/hc:HC ratios varied from 7.2:1 (greater response to vasoconstriction) to 0.49:1 (greater response to vasodilation). Many of the ratios greater than 1, where vasoconstriction predominated, were seen in regions associated with memory, cognition, and executive function, including the entorhinal cortex, hippocampus, parahippocampus, and dorsolateral prefrontal cortex. Conclusions In awake humans, marked rCBF changes occurred with alterations in ET respiratory gases common under anesthesia. Such heterogeneous reactivity may be relevant to future studies to identify those at risk of POD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据