4.5 Article

Comparison of hormone-induced mRNA and protein biomarker expression changes in breast cancer cells

期刊

BREAST CANCER RESEARCH AND TREATMENT
卷 187, 期 3, 页码 681-693

出版社

SPRINGER
DOI: 10.1007/s10549-021-06254-z

关键词

Breast cancer; Estrogen; Progesterone; Menstrual cycle; Gene biomarkers

类别

资金

  1. Hospital Research Foundation
  2. Queen Elizabeth Hospital Haem/Onc Scheme A

向作者/读者索取更多资源

This study showed that estrogen and progesterone have similar effects on mRNA and protein biomarker expression in hormone-responsive breast cancer xenografts, but there may be differences between cell lines. Further research is needed to investigate the concordance between protein and mRNA biomarkers in premenopausal breast cancer.
Purpose Protein biomarkers estrogen receptor (ER), progesterone receptor (PR), and marker of proliferation (Ki67) are routinely assessed by immunohistochemistry to guide treatment decisions for breast cancer. Now, quantification of mRNA encoding these proteins is being adopted in the clinic. However, mRNA and protein biomarkers may be differentially regulated by fluctuations in estrogen and progesterone that occur across the menstrual cycle in premenopausal breast cancer patients. This study aimed to compare how estrogen and progesterone affect mRNA and protein biomarker expression in hormone-responsive breast cancer cells. Methods Hormone-responsive ZR-75-1 and T-47D human breast cancer cell lines were xenografted into the mammary fat pad of BALB/c nude mice supplemented with estrogen. Progesterone or vehicle was administered prior to dissection of tumors. Protein expression of ER, PR and Ki67 was quantified by immunohistochemistry, and mRNA encoding these proteins, ESR1, PGR and KI67, respectively, was quantified by real-time PCR. mRNA expression was also quantified in breast cancer cell lines treated with estrogen and progesterone in vitro. Results In T-47D-xenografted tumors, estrogen and progesterone treatment reduced PGR and KI67 mRNA expression, and reduced PR and Ki67 protein positivity, compared to estrogen treatment alone. In ZR-75-1 xenografted tumors, no significant differences in protein or mRNA biomarker expression were observed. In vitro, estrogen and progesterone co-treatment significantly reduced ESR1 and PGR mRNA expression in both T-47D and ZR-75-1 cell lines. Conclusions Estrogen and progesterone similarly affect mRNA and protein biomarker expression in hormone-responsive breast cancer xenografts. Further research is needed to investigate concordance between protein and mRNA biomarkers in premenopausal breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据