4.6 Article

Greater heterogeneity of the bone mineralisation density distribution and low bone matrix mineralisation characterise tibial subchondral bone marrow lesions in knee osteoarthritis patients

期刊

BONE
卷 149, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2021.115979

关键词

Bone matrix mineralisation; Backscattered electron imaging; Bone marrow lesions; Osteocyte lacunae; Bone remodelling

资金

  1. National Health and Medical Research Council of Australia (NHMRC) [1138865]
  2. National Health and Medical Research Council of Australia [1138865] Funding Source: NHMRC

向作者/读者索取更多资源

The study revealed that tibial BMLs in advanced KOA patients are characterized by significantly hypo-mineralised subchondral bone compared with CTL, with increased bone remodelling in OA-BML. These changes may influence the mechanical properties of the subchondral bone and have implications for the overlying cartilage.
Tibial subchondral bone marrow lesions (BMLs) identified by MRI have been recognised as potential disease predictors in knee osteoarthritis (KOA), and may associate with abnormal bone matrix mineralisation and reduced bone quality. However, these tissue-level changes of BMLs have not been extensively investigated. Thus, the aim of this study was to quantify the degree of subchondral bone matrix mineralisation (both plate and trabeculae) in relation to histomorphometric parameters of bone remodelling and osteocyte lacunae (OL) characteristics in the tibial plateau (TP) of KOA patients with and without BMLs (OA-BML and OA No-BML, respectively) in comparison to non-OA cadaveric controls (CTL). Osteochondral (cartilage-bone) tissue was sampled from the BML signal region within the medial compartment for each OA-BML TP, and from a corresponding medial region for OA No-BML and CTL TPs. The tissue samples were embedded in resin, and sections stained with Von-Kossa Haematoxylin and Eosin (H&E) for quantitation of static indices of bone remodelling. Resin blocks were then further polished, and carbon-coated for quantitative backscattered electron imaging (qBEI) to determine the bone mineralisation density distribution (BMDD), as well as OL characteristics. It was found that OA-BML contained higher osteoid volume per tissue volume (OV/TV; %) and per bone volume (OV/ BV; %) in both subchondral plate and trabecular bone compared to OA No-BML and CTL. The BMDD of OA-BML in both subchondral plate and trabecular bone was shifted toward a lower degree of mineralisation. Typically, an increase in both the heterogeneity of mineralisation density (Ca Width; wt%Ca) and the percentage of lower calcium (Ca Low; % B.Ar) in trabecular bone with OA-BML versus CTL was observed. Further, unmineralised OL density (#/mm2) in subchondral plate was distinctly higher in OA-BML samples compared to CTL. The KOA patients with and without BMLs had significantly decreased density of mineralised OL (#/mm2) in trabecular bone compared to CTL. Taken together, these findings indicate that tibial BMLs in advanced KOA patients are characterised by significantly hypo-mineralised subchondral bone compared with CTL. These differences associated with evidence of increased bone remodelling in OA-BML, and may influence the mechanical properties of the subchondral bone, with implications for the overlying cartilage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据