4.7 Article

Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage

期刊

BMC PLANT BIOLOGY
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-021-03209-w

关键词

Anther dehiscence rate; Disturbed anther walls; Grain yield; Heat tolerance; Pollen viability; Rice (Oryza sativa L; ); Tapetum

资金

  1. National Natural Science Foundation of China [31871541]

向作者/读者索取更多资源

Decreased spikelet fertility in rice under high temperature is mainly caused by reduced pollen viability and anther dehiscence, leading to abnormalities in pollen and anther development. Heat-susceptible varieties are more affected by these disturbances compared to heat-tolerant varieties.
Background Decreased spikelet fertility is often responsible for reduction in grain yield in rice (Oryza sativa L.). In this study, two varieties with different levels of heat tolerance, Liangyoupeijiu (LYPJ, heat susceptible) and Shanyou63 (SY63, heat tolerant) were subjected to two temperature treatments for 28 days during the panicle initiation stage in temperature/relative humidity-controlled greenhouses: high temperature (HT; 37/27 degrees C; day/night) and control temperature (CK; 31/27 degrees C; day/night) to investigate changes in anther development under HT during panicle initiation and their relationship with spikelet fertility. Results HT significantly decreased the grain yield of LYPJ by decreasing the number of spikelets per panicle and seed setting percentage. In addition, HT produced minor adverse effects in SY63. The decreased spikelet fertility was primarily attributed to decreased pollen viability and anther dehiscence, as well as poor pollen shedding of the anthers of LYPJ under HT. HT resulted in abnormal anther development (fewer vacuolated microspores, un-degraded tapetum, unevenly distributed Ubisch bodies) and malformation of pollen (obscure outline of the pollen exine with a collapsed bacula, disordered tectum, and no nexine of the pollen walls, uneven sporopollenin deposition on the surface of pollen grains) in LYPJ, which may have lowered pollen viability. Additionally, HT produced a compact knitted anther cuticle structure of the epidermis, an un-degraded septum, a thickened anther wall, unevenly distributed Ubisch bodies, and inhibition of the confluent locule, and these malformed structures may be partially responsible for the decreased anther dehiscence rate and reduced pollen shedding of the anthers in LYPJ. In contrast, the anther wall and pollen development of SY63 were not substantially changed under HT. Conclusions Our results suggest that disturbed anther walls and pollen development are responsible for the reduced spikelet fertility and grain yield of the tested heat susceptible variety, and noninvasive anthers and pollen formation in response to HT were associated with improved heat tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据