4.7 Article

Genome-wide identification of the Capsicum bHLH transcription factor family: discovery of a candidate regulator involved in the regulation of species-specific bioactive metabolites

期刊

BMC PLANT BIOLOGY
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-021-03004-7

关键词

BHLH; Peppers; Carotenoids; Capsaicinoids; Temperature; Yeast two-hybrid assays

资金

  1. National Natural Science Foundation of China [32070331, 3207180173, 32072580]
  2. China Postdoctoral Science Foundation [2020M682733]
  3. National Key Research and Development Program [2018YFD1000800]

向作者/读者索取更多资源

This study identified a total of 107 CabHLHs from the Capsicum annuum genome, classified into 15 groups. Expression profiles of specific CabHLHs were found to be associated with carotenoid biosynthesis in pericarp and capsaicinoid accumulation in the placenta. Yeast two-hybrid assays confirmed interactions between some CabHLHs and MYB31, a master regulator of capsaicinoid biosynthesis.
Background The basic helix-loop-helix (bHLH) transcription factors (TFs) serve crucial roles in regulating plant growth and development and typically participate in biological processes by interacting with other TFs. Capsorubin and capsaicinoids are found only in Capsicum, which has high nutritional and economic value. However, whether bHLH family genes regulate capsorubin and capsaicinoid biosynthesis and participate in these processes by interacting with other TFs remains unknown. Results In this study, a total of 107 CabHLHs were identified from the Capsicum annuum genome. Phylogenetic tree analysis revealed that these CabHLH proteins were classified into 15 groups by comparing the CabHLH proteins with Arabidopsis thaliana bHLH proteins. The analysis showed that the expression profiles of CabHLH009, CabHLH032, CabHLH048, CabHLH095 and CabHLH100 found in clusters C1, C2, and C3 were similar to the profile of carotenoid biosynthesis in pericarp, including zeaxanthin, lutein and capsorubin, whereas the expression profiles of CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 found in clusters L5, L6 and L9 were consistent with the profile of capsaicinoid accumulation in the placenta. Moreover, CabHLH007, CabHLH009, CabHLH026 and CabHLH086 also might be involved in temperature-mediated capsaicinoid biosynthesis. Yeast two-hybrid (Y2H) assays demonstrated that CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 could interact with MYB31, a master regulator of capsaicinoid biosynthesis. Conclusions The comprehensive and systematic analysis of CabHLH TFs provides useful information that contributes to further investigation of CabHLHs in carotenoid and capsaicinoid biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据