4.6 Article

Scalable robust graph and feature extraction for arbitrary vessel networks in large volumetric datasets

期刊

BMC BIOINFORMATICS
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12859-021-04262-w

关键词

Graph extraction; Vessel network; Scalability; Large volume processing

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [CRC 1450 -431460824]

向作者/读者索取更多资源

This study presents a scalable iterative pipeline for extracting an annotated abstract graph representation from the foreground segmentation of vessel networks of arbitrary topology, demonstrating improved robustness in handling surface noise, vessel shape deviation, and anisotropic resolution on volumes of roughly 1 TB. The implementation of this pipeline is publicly available in version 5.1 of the volume rendering and processing engine Voreen.
Background Recent advances in 3D imaging technologies provide novel insights to researchers and reveal finer and more detail of examined specimen, especially in the biomedical domain, but also impose huge challenges regarding scalability for automated analysis algorithms due to rapidly increasing dataset sizes. In particular, existing research towards automated vessel network analysis does not always consider memory requirements of proposed algorithms and often generates a large number of spurious branches for structures consisting of many voxels. Additionally, very often these algorithms have further restrictions such as the limitation to tree topologies or relying on the properties of specific image modalities. Results We propose a scalable iterative pipeline (in terms of computational cost, required main memory and robustness) that extracts an annotated abstract graph representation from the foreground segmentation of vessel networks of arbitrary topology and vessel shape. The novel iterative refinement process is controlled by a single, dimensionless, a-priori determinable parameter. Conclusions We are able to, for the first time, analyze the topology of volumes of roughly 1 TB on commodity hardware, using the proposed pipeline. We demonstrate improved robustness in terms of surface noise, vessel shape deviation and anisotropic resolution compared to the state of the art. An implementation of the presented pipeline is publicly available in version 5.1 of the volume rendering and processing engine Voreen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据