4.8 Article

Novel sodium bicarbonate activation of cassava ethanol sludge derived biochar for removing tetracycline from aqueous solution: Performance assessment and mechanism insight

期刊

BIORESOURCE TECHNOLOGY
卷 330, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2021.124949

关键词

Cassava ethanol sludge; Sodium bicarbonate; Biochar; Tetracycline; Adsorption mechanism

资金

  1. National Natural Science Foundation of China [51308001]
  2. project of cultivating top talents for the universities in Anhui Province [gxyqZD2017036]

向作者/读者索取更多资源

The study examined the use of NaHCO3-activated biochar for tetracycline removal from wastewater, identifying optimal preparation conditions and factors influencing the process. The adsorption mechanism involving electrostatic attraction, hydrogen bonding, π-π interactions, and pore-filling was proposed, providing guidance for sludge disposal and tetracycline removal in practical applications.
NaHCO3 was used as a novel activator to produce cassava ethanol sludge-based biochar. The NaHCO3-activated biochar showed superior adsorption capacity for tetracycline (154.45 mg/g) than raw biochar (34.04 mg/g). Orthogonal experiments confirmed the optimal preparation conditions of biochar. Increasing adsorbent dosage and temperature facilitated tetracycline removal. The maximum removal was 92.60% at pH = 3.0. Calcium ions and alkalinity decreased tetracycline removal. The time for attaining equilibrium was extended with increasing tetracycline concentration, but the equilibrium could be completed within 24 h. Langmuir model fitted the equilibrium data well. Kinetics process followed the Elovich model. The adsorption rate was controlled by both intraparticle and liquid film diffusion and the process was endothermic and spontaneous. The electrostatic attraction, hydrogen bonding, 7C-7C interactions, and pore-filling were involved in the adsorption mechanism. The findings may provide an underlying guide for sludge disposal and removal of tetracycline from wastewater in practical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据