4.8 Article

Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution

期刊

BIORESOURCE TECHNOLOGY
卷 329, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2021.124926

关键词

Zymomonas mobilis; Lignocellulose; Ethanol; Adaptive evolution; Phenolic aldehydes inhibitors; ZMO3_RS07160

资金

  1. National Natural Science Foundation of China [31961133006, 21978083]

向作者/读者索取更多资源

Through 198 days of laboratory adaptive evolution, researchers successfully increased the tolerance of Zymomonas mobilis strain to phenolic aldehydes and ethanol fermentability, as well as identified a potential candidate gene for synthetic biology applications.
Cellulosic ethanol fermentability of ethanologenic strain Zymomonas mobilis is severely inhibited by phenolic aldehydes generated from lignocellulose pretreatment. Here, a 198 days' laboratory adaptive evolution of Z. mobilis 8b in corn stover hydrolysate was conducted to increase its phenolic aldehydes tolerance and ethanol fermentability. The obtained Z. mobilis Z198 demonstrated a significantly improved conversion of the most toxic phenolic aldehyde (vanillin) by 6.3-fold and cellulosic ethanol production by 21.6%. The transcriptional analysis using qRT-PCR revealed that the gene ZMO3_RS07160 encoding SDR family oxidoreductase in Z. mobilis Z198 was significantly up-regulated by 11.7-fold. The overexpression of ZMO3_RS07160 in the parental Z. mobilis increased the ethanol fermentability to that of the adaptively evolved strain Z. mobilis Z198. This study provided a practical method to obtain a robust cellulosic ethanol fermenting strain, and a candidate gene for synthetic biology of biorefinery strains with strong phenolic aldehydes tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据