4.8 Article

Potential neurotoxicity of titanium implants: Prospective, in-vivo and in-vitro study

期刊

BIOMATERIALS
卷 276, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2021.121039

关键词

Titanium nanoparticles; Neurotoxicity; Blood-brain barrier; Learning and memory; Orthopedic implants

资金

  1. Ministry of Science and Technology [3-13576]
  2. Defense Threat Reduction Agency-Joint Science & Technology Office for Chemical & Biological Defense - Nehemia Rubin Excellence in Biomedical Research - The TELEM Program - Aaron Gutwirth Fund [11816372]

向作者/读者索取更多资源

Studies have shown that high levels of titanium may accumulate in the human body adjacent to orthopedic implants, and it may have neurotoxic effects.
Titanium dioxide (TiO2) is a frequently used biomaterial, particularly in orthopedic and dental implants, and it is considered an inert and benign compound. This has resulted in toxicological scrutiny for TiO2 in the past decade, with numerus studies showing potential pathologic downstream effects. Herein we describe case report of a 77-year-old male with subacute CNS dysfunction, secondary to breakdown of a titanium-based carotid stent and leading to blood levels 1000 times higher (3 ppm) than the reported normal. We prospectively collected tissues adjacent to orthopedic implants and found a positive correlation between titanium concentration and time of implant in the body (r = 0.67, p < 0.02). Rats bearing titanium implants or intravascularly treated with TiO2 nanoparticles (TiNP) exhibited memory impairments. A human blood-brain barrier (BBB) in-vitro model exposed to TiNP showed paracellular leakiness, which was corroborated in-vivo with the decrease of key BBB transcripts in isolated blood vessels from hippocampi harvested from TiNP-treated mice. Titanium particles rapidly inter-nalized into brain-like endothelial cells via caveolae-mediated endocytosis and macropinocytosis and induced pro-inflammatory reaction with increased expression of pro-inflammatory genes and proteins. Immune reaction was mediated partially by IL-1R and IL-6. In summary, we show that high levels of titanium accumulate in humans adjacent to orthopedic implants, and our in-vivo and in-vitro studies suggest it may be neurotoxic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据