4.4 Article Retracted Publication

被撤回的出版物: Upregulation of microRNA-205 suppresses vascular endothelial growth factor expression-mediated PI3K/Akt signaling transduction in human keloid fibroblasts (Retracted article. See JAN, 2023)

期刊

EXPERIMENTAL BIOLOGY AND MEDICINE
卷 242, 期 3, 页码 275-285

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1535370216669839

关键词

Keloid; microRNA-205; vascular endothelial growth factor; Akt

向作者/读者索取更多资源

Keloid is one of the most frustrating problems related to wounding healing and presents a great challenge in clinic. MicroRNAs (miRs) have shown their potential as a novel therapy for the prevention and treatment of keloid. Vascular endothelial growth factor (VEGF) plays a critical role in the regulation of scar development. In the current study, it was hypothesized that miR-205-5p was capable of suppressing keloid formation by inhibiting the VEGF-mediated wound healing cascade. The expression statuses of miR-205-5p and VEGF in clinical keloid tissues and keloid cell line human keloid fibroblasts (HKF) were detected. Then the direct action of miR-205-5p on VEGF gene was assessed using dual-luciferase assay. Thereafter, orchestrated administrations on HKF with miR-205-5p mimic, specific VEGF siRNA, PI3K agonist (740 Y-P), and PI3K inhibitor (LY294002) were performed to reveal the roles of miR-205-5p and VEGF in keloid formation and further explain the mechanism through which miR-205-5p affected the VEGF-mediated signaling transductions. Our results showed that there was significant low expression of miR-205-5p in keloid tissue specimens and the cell line while the expression of VEGF in keloid tissues was augmented. Moreover, miR-205-5p over-expression dramatically impaired the cell viability, induced the cell apoptosis, and inhibited the cell invasion and migration ability in HKF. Based on the detection of dual luciferase assay and detection at protein level, miR-205-5p antagonized the keloids by directly targeting VEGF expression and subsequently inhibiting PI3K/Akt pathway. The current study is the first one demonstrating that miR-205-5p inhibits the pathogenesis of keloids, indicating the potential of miR-205-5p in the development of therapies for prevention and treatment of keloids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据