4.6 Article

Empirical mass-loss rates and clumping properties of Galactic early-type O supergiants

期刊

ASTRONOMY & ASTROPHYSICS
卷 655, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202140603

关键词

stars: atmospheres; stars: early-type; stars: winds, outflows; stars: fundamental parameters; stars: evolution; stars: mass-loss

资金

  1. KU Leuven Research Council [C16/17/007: MAESTRO]
  2. FWO [12ZY520N]
  3. European Space Agency (ESA) through the Belgian Federal Science Policy Office (BELSPO)
  4. Research Foundation - Flanders (FWO)
  5. Flemish Government

向作者/读者索取更多资源

The study investigates the impact of optically thick clumping on spectroscopic stellar wind diagnostics in O supergiants and provides empirical constraints on various wind parameters. By including optically thick clumping, the study was able to simultaneously fit optical and ultraviolet spectra without reducing the phosphorus abundance. Additionally, the study reveals the distribution of clumps in the wind velocity field and the density of the interclump medium.
Aims. We investigate the impact of optically thick clumping on spectroscopic stellar wind diagnostics in O supergiants and constrain wind parameters associated with porosity in velocity space. This is the first time the effects of optically thick clumping have been investigated for a sample of massive hot stars, using models which include a full optically thick clumping description. Methods. We re-analyse existing spectroscopic observations of a sample of eight O supergiants previously analysed with the non-local-thermodynamic-equilibrium (NLTE) atmosphere code CMFGEN. Using a genetic algorithm wrapper around the NLTE atmosphere code FASTWIND we obtain simultaneous fits to optical and ultraviolet spectra and determine photospheric properties, chemical surface abundances and wind properties. Results. We provide empirical constraints on a number of wind parameters including the clumping factors, mass-loss rates and terminal wind velocities. Additionally, we establish the first systematic empirical constraints on velocity filling factors and interclump densities. These are parameters that describe clump distribution in velocity-space and density of the interclump medium in physical-space, respectively. We observe a mass-loss rate reduction of a factor of 3.6 compared to theoretical predictions from Vink et al. (2020, A&A, 362, 295) and mass-loss rates within a factor 1.4 of theoretical predictions from Bjorklund et al. (2021, A&A, 648, A36). Conclusions. We confirm that including optically thick clumping allows simultaneous fitting of optical recombination lines and ultraviolet resonance lines, including the unsaturated ultraviolet phosphorus lines (P V lambda lambda 1118-1128), without reducing the phosphorus abundance. We find that, on average, half of the wind velocity field is covered by dense clumps. We also find that these clumps are 25 times denser than the average wind, and that the interclump medium is 3-10 times less dense than the mean wind. The former result agrees well with theoretical predictions, the latter suggests that lateral filling-in of radially compressed gas might be critical for setting the scale of the rarefied interclump matter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据