4.7 Article

Altered metabolic pathways elucidated via untargeted in vivo toxicometabolomics in rat urine and plasma samples collected after controlled application of a human equivalent amphetamine dose

期刊

ARCHIVES OF TOXICOLOGY
卷 95, 期 10, 页码 3223-3234

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00204-021-03135-8

关键词

Untargeted metabolomics; Toxicometabolomics; Amphetamine; LC-HRMS; MS

资金

  1. Projekt DEAL

向作者/读者索取更多资源

The study utilized untargeted metabolomics to investigate the acute effects of amphetamine on the plasma and urinary metabolome in rats. It revealed a downregulation of amino acids in plasma samples after amphetamine exposure, and identified four new potential biomarkers in urine. The research highlights the need for further studies to elucidate altered metabolic pathways associated with acute amphetamine exposure.
Amphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since amphetamine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were compared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. Statistical evaluation was performed using Welch's two-sample t test, hierarchical clustering, as well as principal component analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute amphetamine exposure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据