4.7 Article

CFD-aided design of internally heat-integrated pressure-swing distillation for ternary azeotropic separation constrained by pinch pressure

期刊

APPLIED THERMAL ENGINEERING
卷 195, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117198

关键词

CFD; Internal heat integration; Heat-integrated pressure-swing distillation (HIPSD); Ternary azeotropic separation; Pinch pressure

向作者/读者索取更多资源

This study focuses on the application of computational fluid dynamics (CFD) in designing internally heat-integrated pressure-swing distillation (HIPSD) for improved energy efficiency in azeotropic distillation. By calculating heat transfer rates inside the HIPSD using the CFD method, total utility consumption was reduced and reboiler and condenser duty in the HIPSD were significantly decreased. Improved separation efficiency in the condenser of the high-pressure column was achieved through internal heat integration.
This study addresses computational fluid dynamics (CFD) for designing internally heat-integrated pressure-swing distillation (HIPSD) with improved energy efficiency in azeotropic distillation. An extended concept of pinch pressure is applied to determine the operating pressure of the HIPSD in a double annular column configuration for the circumvention of a distillation boundary and adequate heat transfer. For the separation of a highly azeotropic ternary mixture of butyl acetate, butanol, and water, the combination of a single unit of HIPSD and a decanter is employed. This azeotropic mixture is separated in different design alternatives for the given initial feed compositions. In each sequence, the heat transfer rate inside the HIPSD was calculated by the CFD method, and the total utility consumption accordingly decreased by 9.72% and 15.44%. The reboiler and condenser duty in the HIPSD were reduced by up to 48.65%. The separation efficiency in the condenser of the high-pressure column was improved enough to reach a zero reflux by the internal heat integration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据