4.7 Article

Molecular dynamics simulations of thin-film evaporation: The influence of interfacial thermal resistance on a graphene-coated heated silicon substrate

期刊

APPLIED THERMAL ENGINEERING
卷 195, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117142

关键词

Thermal management; Thin-film evaporation; Nanocoatings; Kaptiza resistance; Graphene

资金

  1. Cisco Systems [RFP-11070]
  2. National Science Foundation [1943468]
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [1943468] Funding Source: National Science Foundation

向作者/读者索取更多资源

The study analyzed the transport behavior of liquid argon nanofilm evaporating on silicon surfaces coated with different layers of graphene using non-equilibrium molecular dynamics simulations. The results showed that increasing layers of graphene coatings led to a significant increase in Kapitza resistance and a reduction in the evaporation rate. These findings emphasize the dominant role of interfacial thermal transport in the evaporation behavior of thin liquid films and provide guidelines for selecting new materials to improve evaporative cooling performance when designing nanoengineered surfaces.
Two-phase liquid cooling on nanoengineered surfaces has shown great promise for tackling overheating in high performance microelectronics. At the nanoscale, phase change heat transfer can be affected substantially by the thermal resistance at the solid-liquid interface (also known as the Kapitza resistance). For example, surface modification by nanocoatings has been shown to efficiently enhance boiling heat transfer. However, there have been few studies on the effect of the Kapitza resistance on thin-film evaporative heat transfer. Here, the transport behavior of a liquid argon nanofilm evaporating on silicon (100) surfaces coated with different layers of graphene is analyzed using non-equilibrium molecular dynamics (MD) simulations. The results show that increasing layers of graphene coatings lead to a 136% increase in the Kapitza resistance and a 62% reduction in the evaporation rate. The large increase in Kapitza resistance is attributed to the strong repellence between graphene and argon molecules, manifested by a higher contact angle. These findings demonstrate the dominant role of interfacial thermal transport in the evaporation behavior of thin liquid films, and provide guidelines for selecting new materials when designing nanoengineered surfaces to realize improved evaporative cooling performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据