4.7 Article

Ternary nanocomposites of mesoporous graphitic carbon nitride/black phosphorus/gold nanoparticles (mpg-CN/BP-Au) for photocatalytic hydrogen evolution and electrochemical sensing of paracetamol

期刊

APPLIED SURFACE SCIENCE
卷 557, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2021.149755

关键词

Black phosphorus; Graphitic carbon nitride; Photocatalysts; Electrochemical sensor; Paracetamol

资金

  1. TUBITAK (The Scientific and Technological Research Council of Turkey) [119Z497]
  2. Selcuk University Scientific Research Foundation [20111006]
  3. TUBITAK 2211-C Ph.D scholarship

向作者/读者索取更多资源

The novel ternary nanocomposite of mpg-CN/BP-Au shows excellent catalytic performance in the photocatalytic hydrogen evolution reaction and electrochemical detection of paracetamol, potentially paving the way for various photo- and electrochemical applications.
We report herein the fabrication of a novel ternary nanocomposite of mesoporous graphitic carbon nitride/black phosphorus-gold nanoparticles (mpg-CN/BP-Au) and its catalytic performance in the photocatalytic hydrogen evolution reaction (HER) and electrochemical detection of paracetamol. The photocatalytic hydrogen production rate of mpg-CN/BP-Au nanocomposite (1024 mu mol g-1 for 8 h) is compared with mpg-CN, mpg-CN/BP and mpgCN/Au in the presence of triethanolamine (TEOA) as a hole scavenger under the visible light. In addition to the photocatalytic HER application, as-prepared mpg-CN/BP-Au nanocomposite was deposited on modified glassy carbon electrode (mpg-CN/BP-Au/GCE) and for the first time tested for the detection of paracetamol (PA). Under the optimum conditions, linear range of paracetamol detection was found to be in the range of 0.3-120 mu M with a detection limit of 0.0425 mu M. mpg-CN/BP-Au/GCE provided higher electrocatalytic activity than pristine mpgCN and all other tested binary nanocomposites. The enhanced photo- and electrochemical activity of mpgCN/BP-Au/GCE are attributed to formation of heterojunction between BP and mpg-CN materials. Additionally, Au nanoparticles increase the rate of adsorption of mpg-CN/BP due to the excellent electrical properties and spillover effect. We believe that the presented design and catalysis of the ternary nanocomposite will pave a way in many photo- and electrochemical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据