4.7 Article

Molecular dynamics simulation of structural and mechanical features of a Polymer-bonded explosive interface under tensile deformation

期刊

APPLIED SURFACE SCIENCE
卷 557, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2021.149823

关键词

PBX interface; Uniaxial tension; Microstructure evolution; Mechanical properties; Failure mechanism

资金

  1. Science Challenge Project [TZ2016001]
  2. National Natural Science Foundation of China [U1730244]

向作者/读者索取更多资源

This study used molecular dynamics simulations to investigate the effect of temperature and strain rate on the microstructure, mechanical behavior, and fracture damage mechanism of the TATB-F2314 interface. The results provide important insights for the design, preparation, and safe use of PBX materials.
Polymer bonded explosives (PBX) are kind of particulate-reinforced composite materials in which interface interaction is of great significance to its structural and mechanical features. In this work, effect of temperature and strain rate on the microstructure, mechanical properties and fracture damage mechanism of TATB-F2314 are studied using molecular dynamics simulations. The TATB layers at the TATB-F2314 interface are deformed, leading to a rough and undulate surface that facilitates the formation hydrogen bonds between TATB and F2314. Intermixing phase is characterized for the first time at the TATB-F2314 interface. The interfacial structures and mechanical properties of TATB-F2314 depend strongly on temperature and strain rate. F2314 experiences a ductile-to-brittle transition at its glass transition temperature, which exerts great influence on the structural evolution and failure mechanism of TATB-F2314. The fracture mainly appears on F2314 under a quasi-static or low strain rate tension but transfers to TATB layers near to the interfacial intermixing phase at a high strain rate. Our simulations reveal the effect of temperature and strain rate on the microstructure, mechanical behavior and fracture damage mechanism of TATBF2314 interface, which is useful for the design, preparation and safe use of PBX.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据