4.8 Article

Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 286, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2021.119945

关键词

CO2 electrochemical reduction reaction; 2D materials; Hollow fiber gas diffusion electrodes; Electrocatalysis; Formate production; Bismuth electrocatalyst

资金

  1. Australian Research Council (ARC) [FL170100086]
  2. University of Queensland (UQ) Research Training Scholarship
  3. UQ International Scholarship (UQI)
  4. Centre for Microscopy and Microanalysis (CMM) at UQ
  5. Australian Research Council [FL170100086] Funding Source: Australian Research Council

向作者/读者索取更多资源

In this study, Bi-based nanosheets grown on flow-through Cu hollow fiber GDE were used for gas-phase CO2 electrochemical reduction. By optimizing the electrodeposition and thermal oxidation processes, the charge-transfer resistance of Bi nanosheets was reduced, surface roughness was increased, and wettability was improved, leading to significantly enhanced formate production efficiency and quantity.
Gas-phase CO2 electrochemical reduction reaction (CO2RR) requires advanced gas diffusion electrodes (GDEs) for efficient mass transport. Meantime, engineering catalyst nanostructure and tuning surface wettability are decisive to enhance three-phase interfaces formation. Herein, Bi-based nanosheets are uniformly grown on flow-through Cu hollow fiber GDE (HFGDE) to benefit from the unique shape of HFGDEs, and abundant active surface area of nanosheets. Pulse electrodeposition is used to replenish Bi3+ ions in the vicinity of HFGDEs for uniform growth of Bi nanosheets. Further, thermal oxidation of nanosheets not only maximized the active sites and improved surface wettability but also induced Bi/Bi2O3 junctions in nanosheets, enhancing formate production via switching the rate-limiting step from the initial electron transfer to hydrogenation. Consequently, a current density of 141 mA cm(-2) at -1 V vs. RHE with formate faradaic efficiency of 85 % and over six times greater catalyst mass activity compared to bulk particle shaped Bi, were achieved, outperforming other reported Bibased GDEs used for formate production in bicarbonate electrolytes. This comes from less charge-transfer resistance, higher surface roughness, and improved wettability of Bi nanosheets after oxidation. This work represents a facile strategy to engineer efficient HFGDEs as advanced electrode materials for similar electrochemical reactions with low aqueous solubility gas-phase feeds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据