4.8 Article

Remarkably fast low-temperature hydrogen storage into aromatic benzyltoluenes over MgO-supported Ru nanoparticles with homolytic and heterolytic H2 adsorption

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 286, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2021.119889

关键词

Liquid organic hydrogen carrier; Hydrogen storage; Supported Ru catalysts; MgO; Heterolytic hydrogen adsorption

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT, Republic of Korea [NRF-2019M3E6A1064908]
  2. Korea Research Institute of Chemical Technology [KK2011-00]
  3. National Research Council of Science & Technology (NST), Republic of Korea [KK2011-00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  4. National Research Foundation of Korea [2019M3E6A1064908] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study introduced a highly active Ru/MgO catalyst for hydrogenation of monobenzyltoluene and dibenzyltoluene at low temperatures, exhibiting faster storage rate and superior kinetic parameters compared to other supported Ru catalysts. The better catalytic performance is attributed to the strong adsorption capability of monobenzyltoluene and hydrogen by Ru/MgO, as well as the heterolytic H-2 dissociation near the Ru-MgO interface confirmed by DFT calculations.
Hydrogen storage into aromatic compounds under mild conditions is a stringent issue in liquid organic hydrogen carrier (LOHC) systems. Herein, we report a highly active Ru/MgO catalyst in the hydrogenation of monobenzyltoluene and dibenzyltoluene at low temperatures. When MgO with basic surface oxygen was employed as a support, Ru/MgO showed a faster H-2 storage rate and superior kinetic parameters than the other supported Ru catalysts. The better catalytic performance of Ru/MgO was explained by the results of characterization and control experiments. Ru/MgO could adsorb the large amounts of monobenzyltoluene and hydrogen with higher strength. Particularly, homolytic and heterolytic hydrogen adsorption modes were identified in Ru/MgO, unlike Ru/Al2O3 showing homolytic H-2 adsorption. Density functional theory calculations confirmed heterolytic H-2 dissociation near the Ru-MgO interface, which assured the hydrogenation efficiency of Ru/MgO. Consequently, Ru/MgO is highly recommended for fast hydrogen storage into aromatic LOHC compounds at low temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据