4.6 Article

Efficient Conversion of Glycerol to Ethanol Saccharomyces cerevisiae Strain

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00268-21

关键词

glycerol conversion; metabolic engineering; recycling cofactors; bioethanol; Saccharomyces cerevisiae

资金

  1. Research Institute for Sustainable Humanosphere, Kyoto University

向作者/读者索取更多资源

Efficient glycerol-fermenting yeast strains have been developed in this study, demonstrating high conversion efficiency of glycerol to ethanol in rich medium and a mixture of glycerol and glucose. These engineered strains have potential industrial applications and can contribute to the reduction of global warming and agricultural waste.
Glycerol is an eco-friendly solvent that enhances plant biomass decomposition via glycerolysis in many pretreatment methods. Nonetheless, inefficient conversion of glycerol to ethanol by natural Saccharomyces cerevisiae limits its use in these processes. In this study, we have developed an efficient glycerol-converting yeast strain by genetically modifying the oxidation of cytosolic NAD (NADH) by an O-2-dependent dynamic shuttle and abolishing both glycerol phosphorylation and biosynthesis in S. cerevisiae strain D452-2, as well as by vigorous expression of whole genes in the dihydroxyacetone (DHA) pathway (Candida Wills glycerol facilitator, Ogataea polymorpha glycerol dehydrogenase, endogenous dihydroxyacetone kinase, and triosephosphate isomerase). The engineered strain showed conversion efficiencies (CE) up to 0.49 g ethanol/g glycerol (98% of theoretical CE), with a production rate of >1 g liter(-1) h(-1) when glycerol was supplemented in a single fed-batch fermentation in a rich medium. Furthermore, the engineered strain converted a mixture of glycerol and glucose into bioethanol (>86 g/liter) with 92.8% CE. To the best of our knowledge, this is the highest reported titer of bioethanol produced from glycerol and glucose. Notably, we developed a glycerol-utilizing transformant from a parent strain which cannot utilize glycerol as a sole carbon source. The developed strain converted glycerol to ethanol with a productivity of 0.44 g liter(-1) h(-1) on minimal medium under semiaerobic conditions. Our findings will promote the utilization of glycerol in eco-friendly biorefineries and integrate bioethanol and plant oil industries. IMPORTANCE With the development of efficient lignocellulosic biorefineries, glycerol has attracted attention as an eco-friendly biomass-derived solvent that can enhance the dissociation of lignin and cell wall polysaccharides during the pretreatment process. Coconversion of glycerol with the sugars released from biomass after glycerolysis increases the resources for ethanol production and lowers the burden of component separation. However, low conversion efficiency from glycerol and sugars limits the industrial application of this process. Therefore, the generation of an efficient glycerol-fermenting yeast will promote the applicability of integrated biorefineries. Hence, metabolic flux control in yeast grown on glycerol will lead to the generation of cell factories that produce chemicals, which will boost biodiesel and bioethanol industries. Additionally, the use of glycerol-fermenting yeast will reduce global warming and generation of agricultural waste, leading to the establishment of a sustainable society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据