4.7 Review

Terpenoids' anti-cancer effects: focus on autophagy

期刊

APOPTOSIS
卷 26, 期 9-10, 页码 491-511

出版社

SPRINGER
DOI: 10.1007/s10495-021-01684-y

关键词

Terpenoids; Autophagy; Cancer; Cell death

向作者/读者索取更多资源

Terpenoids, the largest class of natural products derived mainly from plants, exhibit diverse anti-tumor effects, including anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. The complex relationship between apoptosis and autophagy in cancer cells is driven by a delicate balance of protein regulation, leading to different outcomes through interrelated signaling pathways. Further research on autophagy induction by terpenoids may provide insights for novel cancer therapies and more effective treatment regimens.
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据