4.6 Article

Leaf size estimation based on leaf length, width and shape

期刊

ANNALS OF BOTANY
卷 128, 期 4, 页码 395-406

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcab078

关键词

Correction factor; functional trait; leaf area; leaf length; leaf morphology; leaf size; leaf width; proportional relationship

资金

  1. Deutsche Forschungsgemeinschaft [SCHR1672/1-1]
  2. Australian Research Council [DP170103410, DE170100208]
  3. Australian Research Council [DE170100208] Funding Source: Australian Research Council

向作者/读者索取更多资源

The paper introduces a simple method for estimating leaf area using leaf length, width, and shape information from species descriptions, which is more accurate and precise than traditional correction factor methods. This approach is suitable for accurately estimating leaf size when image recognition software is not available.
Background and Aims: Leaf size has considerable ecological relevance, making it desirable to obtain leaf size estimations for as many species worldwide as possible. Current global databases, such as TRY, contain leaf size data for similar to 30 000 species, which is only similar to 8% of known species worldwide. Yet, taxonomic descriptions exist for the large majority of the remainder. Here we propose a simple method to exploit information on leaf length, width and shape from species descriptions to robustly estimate leaf areas, thus closing this considerable knowledge gap for this important plant functional trait. Methods: Using a global dataset of all major leaf shapes measured on 3125 leaves from 780 taxa, we quantified scaling functions that estimate leaf size as a product of leaf length, width and a leaf shape-specific correction factor. We validated our method by comparing leaf size estimates with those obtained from image recognition software and compared our approach with the widely used correction factor of 2/3. Key Results: Correction factors ranged from 0.39 for highly dissected, lobed leaves to 0.79 for oblate leaves. Leaf size estimation using leaf shape-specific correction factors was more accurate and precise than estimates obtained from the correction factor of 2/3. Conclusion: Our method presents a tractable solution to accurately estimate leaf size when only information on leaf length, width and shape is available or when labour and time constraints prevent usage of image recognition software. We see promise in applying our method to data from species descriptions (including from fossils), databases, field work and on herbarium vouchers, especially when non-destructive in situ measurements are needed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据