4.8 Article

Synergistic Lysozyme-Photodynamic Therapy Against Resistant Bacteria based on an Intelligent Upconversion Nanoplatform

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 60, 期 35, 页码 19201-19206

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202103943

关键词

antibacterial agents; enzymes; mesoporous materials; photodynamic therapy; upconversion nanoparticles

资金

  1. Science and Technology Cooperation Fund between Chinese and Australian Governments [2017YFE0132300]
  2. Strategic Priority Research Program of the CAS [XDB20000000]
  3. NSFC [51672272, 21771185, 21771178, 21975257, 81572944, 81971983]
  4. Youth Innovation Promotion Association of CAS [2017347]
  5. CAS/SAFEA International Partnership Program for Creative Research Teams

向作者/读者索取更多资源

The research team designed a bio-inorganic nanohybrid that combines lysozyme with the UCNP-PDT system to enhance the efficiency against drug-resistant bacteria. The nanoplatform achieves strong bactericidal capacity and significant bacteriostasis on methicillin-resistant S. aureus through rapid adhesion to bacteria, intelligently bacteria-responsive LYZ release, and synergistic LYZ-PDT effect.
The rapid emergence of drug-resistant bacteria has raised a great social concern together with the impetus for exploring advanced antibacterial ways. NIR-triggered antimicrobial photodynamic therapy (PDT) by lanthanide-doped upconversion nanoparticles (UCNP) as energy donor exhibits the advantages of high tissue penetration, broad antibacterial spectrum and less acquired resistance, but is still limited by its low efficacy. Now we designed a bio-inorganic nanohybrid and combined lysozyme (LYZ) with UCNP-PDT system to enhance the efficiency against resistant bacteria. Benefiting from the rapid adhesion to bacteria, intelligently bacteria-responsive LYZ release and synergistic LYZ-PDT effect, the nanoplatform achieves an exceptionally strong bactericidal capacity and conspicuous bacteriostasis on methicillin-resistant S. aureus. These findings pave the way for designing efficiently antibacterial nanomaterials and provide a new strategy for combating deep-tissue bacterial infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据