4.7 Article

Sensitive aptasensing of ciprofloxacin residues in raw milk samples using reduced graphene oxide and nanogold-functionalized poly(amidoamine) dendrimer: An innovative apta-platform towards electroanalysis of antibiotics

期刊

ANALYTICA CHIMICA ACTA
卷 1174, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aca.2021.338736

关键词

Aptasensor; Ciprofloxacin; Electroanalysis; Food and drug analysis; Polymer

资金

  1. Tabriz University of Medical Sciences, Tabriz, Iran [64820]

向作者/读者索取更多资源

The constant need for food resources by humans and animals has led to an overuse of antibiotics, resulting in risks to food safety and the environment. Therefore, the development of simple and sensitive methods for fast monitoring of antibiotic levels is highly desirable. A new sensitive and easy-to-use strategy based on electrochemical single off apta-assay toward ciprofloxacin has been described, showing promising results for antibiotic detection.
The constant need of humans and animals for food resources was led to overuse of antibiotics as vital medicines. In this regard, we are now facing major concern about the risks on the food safety and environment owing to their uncontrolled disposal. Hence, the progress of simple and sensitive approaches for fast monitoring of antibiotic levels is highly desirable. Here, we aimed to describe a new sensitive and easy-to use strategy based on electrochemical single off apta-assay toward ciprofloxacin (CFX). A novel interface using 3D Au-PAMAM/rGO have been designed via full electrochemically technique on the surface of glassy carbon electrodes (GCE) and evaluated with cyclic voltammetry method. Firstly, rGO with large amount of active functional groups as substrate was fabricated on the GCE electrode. Thereby, the 3D Au-PAMAM nanocomposite was synthesized and covalently electrodeposited onto the rGO-GCE modified surface. The structure and morphology of 3D Au-PAMAM were studied using UV eVis spectroscopy, Field emission scanning electron microscopes (FE-SEM) and Transmission electron microscopy. Also, FE-SEM and Energy-dispersive X-ray spectroscopy (EDS) have been carry out to illustrate surface morphology of electrodes. The obtained results from square wave voltammetry, different pulse voltammetry, and chronoamperometry techniques implied that the suggested scaffold could be used as facile bio-device toward antibiotic detection with low limit of quantification (LLOQ) of 1 nM and a linear range of 1 mu M-1 nM. Interestingly, the suggested aptasensor is successfully used to measure CFX residues in local and pasteurized milk samples. It can be deduced that Apt/rGO/3D Au-PAMAM/GCE as a novel biocompatible interface could offer suitable, cost-effective, reliable, rapid, and user-friendly sensing device for direct determination of CFX in real samples. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据