4.3 Article

Identification of a novel distension-evoked motility pattern in the mouse uterus

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00327.2020

关键词

motility; myometrium; smooth muscle; uterine contraction; uterus

资金

  1. Flinders Foundation Health Seed Grant
  2. National Health and Medical Research Council Project [1156416, 1127140]
  3. Australian Research Council [DP190103628]

向作者/读者索取更多资源

This study reveals that myogenic motility patterns of the nonpregnant mouse uterus are sensitive to changes in intraluminal pressure and may be modulated by voltage-gated sodium channel activity.
The dynamic changes in uterine contractility in response to distension are incompletely understood. Rhythmic, propagating contractions of nonpregnant uterine smooth muscle occur in the absence of nerve activity (i.e., myogenic), events that decline during pregnancy and reemerge at parturition. We therefore sought to determine how myogenic contractions of the nonpregnant uterus are affected by distension, which might provide mechanistic clues underlying distension-associated uterine conditions such as preterm birth. Uteri isolated from nulliparous adult female mice in proestrus were video imaged to generate spatiotemporal maps, and myoelectrical activity simultaneously recorded using extracellular suction electrodes. Motility patterns were examined under basal conditions and following ramped intraluminal distension with fluid to 5 and 10 cmH2O. Intraluminal distension caused pressure-dependent changes in the frequency, amplitude, propagation speed, and directionality of uterine contractions, which reversed upon pressure release. Altered burst durations of underlying smooth muscle myoelectric events were concurrently observed, although action potential spike intervals were unchanged. Voltage-gated sodium channel blockade [tetrodotoxin (TTX); 0.6 mM] attenuated both the amplitude of contractions and burst duration of action potentials, whereas all activity was abolished by L-type calcium channel blockade (nifedipine; 1 mM). These data suggest that myogenic motility patterns of the nonpregnant mouse uterus are sensitive to changes in intraluminal pressure and, at high pressures, may be modulated by voltage-gated sodium channel activity. Future studies may investigate whether similar distension-evoked changes occur in the pregnant uterus and the possible pathophysiological role of such activity in the development of preterm birth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据