4.7 Article

A modified two-leaf light use efficiency model for improving the simulation of GPP using a radiation scalar

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 307, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agrformet.2021.108546

关键词

Gross Primary Productivity; Light Use Efficiency Models; Two-Leaf Models; Radiation Scalar; Eddy Covariance Flux Measurements

资金

  1. National Key Research and Development Program of China [2019YFB2102903]
  2. National Natural Science Foundation of China [42001371]
  3. China Scholarship Council

向作者/读者索取更多资源

The study introduces a modified TL-LUE model with a radiation scalar (RTL-LUE) to improve GPP simulation, showing better tracking of diurnal and seasonal variations compared to the TL-LUE model. The RTL-LUE model exhibits lower sensitivity to radiation and alleviates the overestimation issues associated with the TL-LUE model at noon and during growing seasons.
Two-leaf light use efficiency (TL-LUE) models are efficient methods to simulate regional and global gross primary productivity (GPP). A TL-LUE model has previously been shown to outperform the big-leaf MOD17 model through separate consideration of the contributions of sunlit and shaded leaves. However, the impacts of radiation intensity on LUE are inadequately considered in the TL-LUE model, and the maximum LUEs of sunlit and shaded leaves are assigned as different constants, which often induce large uncertainties. Therefore, a TL-LUE model modified with a radiation scalar (RTL-LUE) is developed in this paper. The same maximum LUE is used for both sunlit and shaded leaves, and the difference in LUE between sunlit and shaded leaf groups is determined by the same radiation scalar. The RTL-LUE model was calibrated and validated at global 169 FLUXNET eddy covariance (EC) sites. Results indicate that although GPP simulations from the TL-LUE model match well with the EC GPP, the RTL-LUE model can further improve the simulation, for half-hour, 8-day, and yearly time scales. The TL-LUE model tends to overestimate GPP under conditions of high incoming photosynthetically active radiation (PAR), because the radiation-independent LUE values for both sunlit and shaded leaves are only suitable for low-medium (e.g., average) incoming PAR conditions. The errors in the RTL-LUE model show lower sensitivity to PAR, and its GPP simulations can better track the diurnal and seasonal variations of EC GPP by alleviating the overestimation at noon and growing seasons associated with the TL-LUE model. This study demonstrates the necessity of considering a radiation scalar in GPP simulation in LUE models even if the first-order effect of radiation is already considered through differentiating sunlit and shaded leaves. The simple RTL-LUE developed in this study would be a useful alternative to complex process-based models for global carbon cycle research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据