4.8 Article

A Zwitterionic Polyurethane Nanoporous Device with Low Foreign-Body Response for Islet Encapsulation

期刊

ADVANCED MATERIALS
卷 33, 期 39, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202102852

关键词

biocompatibility; islet encapsulation; nanofibrous devices; zwitterionic polyurethane

资金

  1. Hartwell Foundation
  2. National Institutes of Health (NIH) [1R01DK105967-01A1]
  3. Novo Nordisk Company

向作者/读者索取更多资源

The ZPU encapsulation device is developed with sulfobetaine groups in the polymer backbone, offering superior properties for cell encapsulation therapies with efficient mass transfer and prevention of cell escape. It has demonstrated therapeutic potential for islet encapsulation and treating diabetes, showing low foreign-body response and high biological compatibility.
Encapsulation of insulin-producing cells is a promising strategy for treatment of type 1 diabetes. However, engineering an encapsulation device that is both safe (i.e., no cell escape and no breakage) and functional (i.e., low foreign-body response (FBR) and high mass transfer) remains a challenge. Here, a family of zwitterionic polyurethanes (ZPU) with sulfobetaine groups in the polymer backbone is developed, which are fabricated into encapsulation devices with tunable nanoporous structures via electrospinning. The ZPU encapsulation device is hydrophilic and fouling-resistant, exhibits robust mechanical properties, and prevents cell escape while still allowing efficient mass transfer. The ZPU device also induces a much lower FBR or cellular overgrowth upon intraperitoneal implantation in C57BL/6 mice for up to 6 months compared to devices made of similar polyurethane without the zwitterionic modification. The therapeutic potential of the ZPU device is shown for islet encapsulation and diabetes correction in mice for approximate to 3 months is demonstrated. As a proof of concept, the scalability and retrievability of the ZPU device in pigs and dogs are further demonstrated. Collectively, these attributes make ZPU devices attractive candidates for cell encapsulation therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据