4.8 Article

Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasi-2D Perovskites for Efficient Green Light-Emitting Diodes

期刊

ADVANCED MATERIALS
卷 33, 期 40, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202102246

关键词

alkali-metal cations; crystallization kinetics; perovskite light-emitting diodes; quasi-2D perovskites

资金

  1. National Key Research and Development Program of China [2017YFA0206701, 2020YFB1506400]
  2. National Natural Science Foundation of China [51972004]
  3. Tencent Foundation through the XPLORER PRIZE

向作者/读者索取更多资源

By manipulating the crystallization kinetics of different-n phases, a more efficient energy transfer in Q-2D perovskites is achieved, leading to highly efficient green LEDs.
Quasi-2D (Q-2D) perovskites are promising materials applied in light-emitting diodes (LEDs) due to their high exciton binding energy and quantum confinement effects. However, Q-2D perovskites feature a multiphase structure with abundant grain boundaries and interfaces, leading to nonradiative loss during the energy-transfer process. Here, a more efficient energy transfer in Q-2D perovskites is achieved by manipulating the crystallization kinetics of different-n phases. A series of alkali-metal bromides is utilized to manipulate the nucleation and growth of Q-2D perovskites, which is likely associated with the Coulomb interaction between alkali-metal ions and the negatively charged PbBr64- frames. The incorporation of K+ is found to restrict the nucleation of high-n phases and allows the subsequent growth of low-n phases, contributing to a spatially more homogeneous distribution of different-n phases and promoted energy transfer. As a result, highly efficient green Q-2D perovskites LEDs with a champion EQE of 18.15% and a maximum brightness of 25 800 cd m(-2) are achieved. The findings affirm a novel method to optimize the performance of Q-2D perovskite LEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据