4.8 Article

A Bridge-Building Glycan Scaffold Mimicking Microbial Invasion for In Situ Endothelialization

期刊

ADVANCED MATERIALS
卷 33, 期 42, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202103490

关键词

angiogenesis; blood vessels; carbohydrates; cell adhesion; natural biomaterials

资金

  1. Science and Technology Development Fund, Macau SAR [0018/2019/AFJ, 0097/2019/A2]
  2. National Natural Science Foundation of China [32022088]

向作者/读者索取更多资源

This study introduces a glycan material mimicking fungal action to support endothelial cell adhesion, promote blood perfusion, and exhibit high safety potential for vascular therapy.
The globally high prevalence of peripheral artery diseases poses a pressing need for biomaterials grafts to rebuild vasculature. When implanted, they should promote endothelial cells (ECs) adhesion both profoundly and selectively-but the latter expectation remains unfulfilled. Here, this work is inspired by fungi that invade blood vessels via the bridge of galectins that, secreted by ECs, can simultaneously bind carbohydrates on fungal surface and integrin receptors on ECs. A glucomannan decanoate (GMDE) substrate mimicking fungal carbohydrates that highly and preferentially supports ECs adhesion while rejecting several other cell types is designed. Electrospun GMDE scaffolds efficiently sequester endogenous galectin-1-which bridges ECs to the scaffolds as it functions in fungal invasions-and promote blood perfusion in a murine limb ischemic model. Meanwhile, the application of GMDE requires no exogenous pro-angiogenic agents and causes no organ toxicity or adverse inflammation in mice, highlighting its high safety of potential translation. This glycan material, uniquely mimicking a microbial action and harnessing a secreted protein as a bridge, represents an effective, safe, and different strategy for ischemic vascular therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据