4.8 Article

Spontaneous Formation of Upper Gradient 2D Structure for Efficient and Stable Quasi-2D Perovskites

期刊

ADVANCED MATERIALS
卷 33, 期 34, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202101823

关键词

hydrophobicity; Ruddlesden-Popper perovskites; spacer cations; thermal stability

资金

  1. National Natural Science Foundation of China (NSFC) [51803085, 51833004, 22005131, U20A20128]

向作者/读者索取更多资源

By incorporating hydrophobic 4TFBZA into MAPbI(3), highly efficient and stable quasi-2D hybrid perovskite solar cells have been successfully demonstrated. The structure can effectively passivate trap states, restrain ion motion, suppress perovskite decomposition, and improve both thermal and moisture stability.
Highly efficient and stable quasi-2D hybrid perovskite solar cells (PSCs) using hydrophobic 4-(trifluoromethyl) benzylamine (4TFBZA) as the spacer cation are successfully demonstrated. It is found that the incorporation of hydrophobic 4TFBZA into MAPbI(3) can effectively induce a spontaneous upper gradient 2D (SUG-2D) structure, passivate the trap states, and restrain the ion motion. Meanwhile, the strong hydrogen bonding of F center dot center dot center dot H-N between 4TFBZA ions and methylamine ions can effectively suppress the decomposition of perovskite, which gives the device a better thermal stability. Besides, due to the SUG-2D structure with hydrophobic 4TFBZA, the device also exhibits a better moisture stability. The SUG-2D-structure-based device exhibits a power conversion efficiency of 17.07% with a high open-circuit voltage of 1.10 V and a notable fill factor of 71%. This work provides a new strategy for constructing efficient and stable quasi-2D PSCs, and it is an inspiration for the packaging strategy of perovskites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据