4.8 Review

Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems

期刊

ADVANCED MATERIALS
卷 33, 期 42, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202102990

关键词

processing strategies; self-powered electronic systems; thermoelectric materials; wearable devices

资金

  1. National Natural Science Foundation of China [51521002, 21334002]
  2. Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology) [2019-skllmd-01]
  3. Knut and Alice Wallenberg Foundation (Wallenberg Wood Science Center)
  4. Swedish Research Council [2016-06146]
  5. Advanced Functional Materials Center at Linkoping University [2009-00971]

向作者/读者索取更多资源

The emergence of artificial intelligence and the Internet of Things has led to a growing demand for wearable and maintenance-free power sources. Development of devices powered by body heat is now feasible, and thermoelectric materials have emerged as promising candidates for effective conversion of body heat into electricity. Wearable thermoelectric generators have become more flexible and stretchable, and various functional materials, processing techniques, and device design strategies are discussed in this review. Challenges in organic TE materials, interfacial engineering, and assessments of device performance are also addressed, with suggestions provided for future developments in the area of wearable TE materials and devices.
The emergence of artificial intelligence and the Internet of Things has led to a growing demand for wearable and maintenance-free power sources. The continual push toward lower operating voltages and power consumption in modern integrated circuits has made the development of devices powered by body heat finally feasible. In this context, thermoelectric (TE) materials have emerged as promising candidates for the effective conversion of body heat into electricity to power wearable devices without being limited by environmental conditions. Driven by rapid advances in processing technology and the performance of TE materials over the past two decades, wearable thermoelectric generators (WTEGs) have gradually become more flexible and stretchable so that they can be used on complex and dynamic surfaces. In this review, the functional materials, processing techniques, and strategies for the device design of different types of WTEGs are comprehensively covered. Wearable self-powered systems based on WTEGs are summarized, including multi-function TE modules, hybrid energy harvesting, and all-in-one energy devices. Challenges in organic TE materials, interfacial engineering, and assessments of device performance are discussed, and suggestions for future developments in the area are provided. This review will promote the rapid implementation of wearable TE materials and devices in self-powered electronic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据