4.8 Article

A Gas-Steamed MOF Route to P-Doped Open Carbon Cages with Enhanced Zn-Ion Energy Storage Capability and Ultrastability

期刊

ADVANCED MATERIALS
卷 33, 期 31, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202101698

关键词

carbon cages; electrochemistry; energy storage; metal-organic frameworks; Zn-ion hybrid supercapacitors

资金

  1. AIST

向作者/读者索取更多资源

Carbon micro/nanocages fabricated using a solid-state gas-steamed metal-organic-framework approach exhibit large openings on walls for enhanced kinetics of mass transport. The carbon cathodes show high operation voltage and ultralong cycling lifespan, resulting in high energy density and superb power density.
Carbon micro/nanocages have received great attention, especially in electrochemical energy-storage systems. Herein, as a proof-of-concept, a solid-state gas-steamed metal-organic-framework approach is designed to fabricate carbon cages with controlled openings on walls, and N, P dopants. Taking advantage of the fabricated carbon cages with large openings on their walls for enhanced kinetics of mass transport and N, P dopants within the carbon matrix for favoring chemical adsorption of Zn ions, when used as carbon cathodes for advanced aqueous Zn-ion hybrid supercapacitors (ZHSCs), such open carbon cages (OCCs) display a wide operation voltage of 2.0 V and an enhanced capacity of 225 mAh g(-1) at 0.1 A g(-1). Also, they exhibit an ultralong cycling lifespan of up to 300 000 cycles with 96.5% capacity retention. Particularly, such OCCs as electrode materials lead to a soft-pack ZHSC device, delivering a high energy density of 97 Wh kg(-1) and a superb power density of 6.5 kW kg(-1). Further, the device can operate in a wide temperature range from -25 to + 40 degrees C, covering the temperatures for practical applications in daily life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据