4.8 Article

Lattice-Confined Ir Clusters on Pd Nanosheets with Charge Redistribution for the Hydrogen Oxidation Reaction under Alkaline Conditions

期刊

ADVANCED MATERIALS
卷 33, 期 43, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202105400

关键词

electrocatalysis; epitaxial growth; heterostructures; hydrogen oxidation reaction; interface chemistry

资金

  1. Hundred Talents Program of Zhejiang University
  2. National Natural Science Foundation of China [52001278]
  3. China Postdoctoral Science Foundation [2020M671712]
  4. Zhejiang Provincial Natural Science Foundation [Q21E010027]

向作者/读者索取更多资源

A heterostructured Ir@Pd electrocatalyst with ultrasmall Ir nanoclusters epitaxially confined on Pd nanosheets is reported for catalyzing the sluggish alkaline HOR. The unique structure shows an optimal balance between hydrogen and hydroxyl adsorption, resulting in impressive HOR activity with negligible degradation. The electron transfer and formation of Ir/IrO2 Janus nanostructures play crucial roles in optimizing the activity of the catalyst.
Electrocatalysts with high activity and long-term stability for the hydrogen oxidation reaction (HOR) under alkaline conditions is still a major challenge for anion exchange membrane fuel cells (AEMFCs). Herein, a heterostructured Ir@Pd electrocatalyst with ultrasmall Ir nanoclusters (NCs) epitaxially confined on Pd nanosheets (NSs) for catalyzing the sluggish alkaline HOR is reported. Apparent charge redistribution occurs across the heterointerface, and both experimental and theoretical results suggest that the electrons transfer from Pd to Ir, which consequently greatly weakens the hydrogen binding on Pd. More interestingly, the interfacial epitaxy results in the formation of Ir/IrO2 Janus nanostructures, where the partially oxidized Ir species away from the interface further optimize the hydroxyl adsorption behavior. The unique Ir@Pd heterostructure eventually shows an optimal balance between hydrogen and hydroxyl adsorption, and hence exhibits impressive HOR activity with an exchange current density of up to 7.18 mA cm(-2) in 0.1 m KOH solution. In addition, the Ir@Pd electrocatalyst exhibits negligible activity degradation owing to the confinement effect of the unique epitaxial interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据