4.8 Article

3D Temporary-Magnetized Soft Robotic Structures for Enhanced Energy Harvesting

期刊

ADVANCED MATERIALS
卷 33, 期 40, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202102691

关键词

3D assembly; energy harvesting; robotic structures; soft actuators; temporary-magnetization

资金

  1. National Key R&D Project from Ministry of Science and Technology, China [2018YFA0108100, 2016YFA0202701]
  2. National Natural Science Foundation of China [61674004]

向作者/读者索取更多资源

Functional materials like magnetic materials have the potential to create multifunctional devices, including sensing and actuation capabilities. A mechanically guided assembly process can convert 2D magnetic materials into 3D structures, with applications in energy harvesting systems and solar tracking systems.
The advent of functional materials offers tremendous potential in a broad variety of areas such as electronics, robotics, and energy devices. Magnetic materials are an attractive candidate that enable multifunctional devices with capabilities in both sensing and actuation. However, current magnetic devices, especially those with complex motion modalities, rely on permanently magnetized materials with complicated, non-uniform magnetization profiles. Here, based on magnetic materials with temporary-magnetization, a mechanically guided assembly process successfully converts laser-patterned 2D magnetic materials into judiciously engineered 3D structures, with dimensions and geometries ranging from mesoscale 3D filaments, to arrayed centimeter-scale 3D membranes. With tailorable mechanical properties and highly adjustable geometries, 3D soft structures can exhibit various tethered locomotions under the precise control of magnetic fields, including local deformation, unidirectional tilting, and omnidirectional rotation, and can serve as dynamic surfaces for further integration with other functional materials or devices. Examples demonstrated here focus on energy-harvesting systems, including 3D piezoelectric devices for noncontact conversion of mechanical energy and active motion sensing, as well as 3D solar tracking systems. The design strategy and resulting magnetic-controlled 3D soft structures hold great promise not only for enhanced energy harvesting, but also for multimodal sensing, robotic interfaces, and biomedical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据