4.8 Article

Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries

期刊

ADVANCED MATERIALS
卷 33, 期 38, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202101006

关键词

lithium polysulfides; lithium-sulfur batteries; selective catalysis; shuttle effect

资金

  1. National Natural Science Foundation of China [51932005, 92034301, 21773156]
  2. National Science Fund for Distinguished Young Scholars, China [22025204, 51525204]
  3. Innovation Program of Shanghai Municipal Education Commission [2021-01-07-00-02-E00119]
  4. National Science Foundation of Tianjin, China [18JCQNJC02300]
  5. National Key Research and Development Program of China [2018YFE0124500]
  6. Australian Government
  7. University of Adelaide

向作者/读者索取更多资源

Selective catalysis is proposed as a fundamental remedy for the shuttle effect of soluble lithium polysulfides in Li-S batteries, benefiting from its ability to decelerate the accumulation of polysulfides and enhance battery performance, as experimentally and theoretically demonstrated in this study.
The shuttling of soluble lithium polysulfides between the electrodes leads to serious capacity fading and excess use of electrolyte, which severely bottlenecks practical use of Li-S batteries. Here, selective catalysis is proposed as a fundamental remedy for the consecutive solid-liquid-solid sulfur redox reactions. The proof-of-concept Indium (In)-based catalyst targetedly decelerates the solid-liquid conversion, dissolution of elemental sulfur to polysulfides, while accelerates the liquid-solid conversion, deposition of polysulfides into insoluble Li2S, which basically reduces accumulation of polysulfides in electrolyte, finally inhibiting the shuttle effect. The selective catalysis is revealed, experimentally and theoretically, by changes of activation energies and kinetic currents, modified reaction pathway together with the probed dynamically changing catalyst (LiInS2 catalyst), and gradual deactivation of the In-based catalyst. The In-based battery works steadily over 1000 cycles at 4.0 C and yields an initial areal capacity up to 9.4 mAh cm(-2) with a sulfur loading of approximate to 9.0 mg cm(-2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据