4.8 Article

Limiting the Uncoordinated N Species in M-Nx Single-Atom Catalysts toward Electrocatalytic CO2 Reduction in Broad Voltage Range

期刊

ADVANCED MATERIALS
卷 34, 期 25, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202104090

关键词

CO; (2) reduction; electrocatalysis; joule heating; N species; single atom

资金

  1. National Key R&D Program of China [2017YFA0207301]
  2. NSFC [21725102, U1832156, 91961106, 21803002]
  3. Anhui Provincial Natural Science Foundation [2008085J05]
  4. Youth Innovation Promotion Association of CAS [2019444]
  5. DNL Cooperation Fund, CAS [DNL201922]
  6. USTC Center for Micro- and Nanoscale Research and Fabrication

向作者/读者索取更多资源

Carbon-supported Ni single-atom catalysts with precisely controlled single-atom structure achieved through joule heating strategy show superior performance in electrocatalytic carbon dioxide reduction reaction, with 80% of N dopants coordinated with metal elements, thereby avoiding unfavorable N species and demonstrating unprecedented activity, selectivity, and stability.
Carbon-supported single-atom catalysts (SACs) are extensively studied because of their outstanding activity and selectivity toward a wide range of catalytic reactions. Amidst its development, excess dopants (e.g., nitrogen) are always required to ensure the high loading content of SACs on the carbon support. However, the use of excess dopants is accompanied by formation of miscellaneous structures (particularly the uncoordinated N species) on catalysts, leading to adverse effects on their performance. Herein, the synthesis of carbon-supported Ni SACs with precisely controlled single-atom structure via joule heating strategy, showing the coordination of 80% of N dopants with metal elements, is reported. The preclusion of the unfavorable N species is confirmed to be the main reason for the superior performance of optimized Ni SACs in electrocatalytic carbon dioxide reduction reaction, which demonstrates unprecedented activity, selectivity, and stability under an exceptionally broad voltage range (>92% CO selectivity in the range of -0.7 to -1.9 V reversible hydrogen electrode). Such a synthetic strategy is further applicable for the design of SACs with various metals. This work demonstrates a facile method for preclusion of unfavorable dopants in the SACs and its importance in catalytic application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据