4.8 Article

Viral Transduction Enhancing Effect of EF-C Peptide Nanofibrils Is Mediated by Cellular Protrusions

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 40, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202104814

关键词

cellular protrusions; peptide nanofibrils; retroviral vector; transduction enhancer

资金

  1. DFG
  2. Volkswagenstiftung
  3. Leibniz Association
  4. German Federal Ministry for Research and Education
  5. International Graduate School in Molecular Medicine Ulm
  6. Projekt DEAL

向作者/读者索取更多资源

Self-assembling peptide nanofibrils (PNF) are versatile molecules in material science and biomedicine, with an important application being the enhancement of retroviral gene transfer. The mechanism of transduction enhancement with EF-C PNF involves binding to the negatively charged membranes of viruses and cells to increase virion attachment and fusion, potentially through an active engagement with cellular protrusions like filopodia.
Self-assembling peptide nanofibrils (PNF) have gained increasing attention as versatile molecules in material science and biomedicine. One important application of PNF is to enhance retroviral gene transfer, a technology that has been central for gene therapy approaches. The best-investigated and commercially available PNF is derived from a 12-mer peptide termed EF-C. The mechanism of transduction enhancement depends on the polycationic surface of EF-C PNF, which bind to the negatively charged membranes of viruses and cells, thereby overcoming electrostatic repulsions and increasing virion attachment and fusion. To better understand how EF-C PNF interact with the cell surface, scanning electron and time-lapse confocal microscopy were performed. The fibrils are found to be actively engaged by cellular protrusions such as filopodia. Consequently, chemical suppression of protrusion formation abrogates fibril binding and virion delivery to the cell surface of immortalized and primary T cells. Vice versa, induction of plasma membrane blebs result in increased fibril binding. Thus, the mechanism of PNF-mediated viral transduction enhancement involves an active engagement of virus-loaded fibrils by cellular protrusions, which may explain its superior performance over soluble transduction enhancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据