4.8 Article

A MoS2 and Graphene Alternately Stacking van der Waals Heterostructure for Li+/Mg2+ Co-Intercalation

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 42, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202103214

关键词

graphene; Li; (+); Mg; (2+) co-intercalation; Li; (+); Mg; (2+) hybrid-ion batteries; MoS; (2); van der Waals heterostructure

资金

  1. National Natural Science Foundation of China [21776052, 22078078]

向作者/读者索取更多资源

By constructing van der Waals heterostructures (MoS2/G VH) with graphene monolayers intercalating into MoS2, migration energy barriers of Li+ and Mg2+ were significantly reduced, leading to superior electrochemical performance in Li+/Mg2+ hybrid-ion batteries.
Owing to the low-cost, dendrite-free formation, and high volumetric capacity, rechargeable Li+/Mg2+ hybrid-ion batteries (LMIBs) have attracted great attention and are regarded as promising energy storage devices. However, due to the strong Coulombic interaction of Mg2+ with host materials, the traditional Daniell Type LMIBs with only Li+ intercalation usually cannot ensure a satisfactory energy density. Herein, graphene monolayers are arranged intercalating into MoS2 interlamination to construct van der Waals heterostructures (MoS2/G VH). This operation transforms the construction of ion channels from pristine interlamination of two MoS2 monolayers to the interlamination of MoS2 monolayer with graphene monolayer, thereby greatly reducing ion diffusion energy barriers. Compared with pristine MoS2, the MoS2/G VH can obviously reduce the migration energy barriers of Li+ (from 0.67 to 0.09 eV) and Mg2+ (from 1.01 to 0.21 eV). Moreover, it is also demonstrated that MoS2/G VHs realize Li+/Mg2+ co-intercalation even at a rate current of 1000 mA g(-1). As expected, the MoS2/G VH exhibits superior electrochemical performance with a reversible capacity of 145.8 mAh g(-1) at 1000 mA g(-1) after 2200 cycles, suggesting the feasibility of potential applications for high-performance energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据