4.8 Article

Iron, Nitrogen Co-Doped Carbon Spheres as Low Cost, Scalable Electrocatalysts for the Oxygen Reduction Reaction

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 46, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202102974

关键词

anion exchange membrane fuel cells; electrocatalysts; non-PGM catalysts; oxygen reduction reaction; xylose

资金

  1. EPSRC [EP/P023851/1, EP/S01800X/1, EP/P009050/1]
  2. Chinese Scholarship Council
  3. EPSRC [EP/P009050/1] Funding Source: UKRI

向作者/读者索取更多资源

Atomically dispersed transition metal-nitrogen-carbon catalysts are emerging as low-cost electrocatalysts for the oxygen reduction reaction in fuel cells. A synthesis strategy for these catalysts is still required, as well as a greater understanding of their mechanisms. Iron, nitrogen co-doped carbon spheres (Fe@NCS) have been prepared and FeN4 is identified as the main form of iron existing in the obtained Fe@NCS. Starting from Fe2+ and Fe3+ precursors, catalysts show chemical and structural differences. Fe2+@NCS-A displays better catalytic activity for the oxygen reduction reaction and shows potential for developing high-performance, low-cost fuel cell catalysts.
Atomically dispersed transition metal-nitrogen-carbon catalysts are emerging as low-cost electrocatalysts for the oxygen reduction reaction in fuel cells. However, a cost-effective and scalable synthesis strategy for these catalysts is still required, as well as a greater understanding of their mechanisms. Herein, iron, nitrogen co-doped carbon spheres (Fe@NCS) have been prepared via hydrothermal carbonization and high-temperature post carbonization. It is determined that FeN4 is the main form of iron existing in the obtained Fe@NCS. Two different precursors containing Fe2+ and Fe3+ are compared. Both chemical and structural differences have been observed in catalysts starting from Fe2+ and Fe3+ precursors. Fe2+@NCS-A (starting with Fe2+ precursor) shows better catalytic activity for the oxygen reduction reaction. This catalyst is studied in an anion exchange membrane fuel cell. The high open-circuit voltage demonstrates the potential approach for developing high-performance, low-cost fuel cell catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据