4.6 Article

Quantification of the Knudsen Effect on the Effective Gas Diffusion Coefficient in Partially Saturated Pore Distributions

期刊

ADVANCED ENGINEERING MATERIALS
卷 23, 期 10, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.202100106

关键词

effective gas diffusion coefficient; gas transport in porous media; knudsen diffusion; moisture transport; nanopores

资金

  1. Projekt DEAL

向作者/读者索取更多资源

This study quantifies the influence of partially saturated pores on gas diffusion by investigating different pore geometries and size distributions. It demonstrates that water layer thickness significantly affects effective diffusion for pore radii below 50 nm.
The effective gas diffusion coefficient describes the process of gas diffusion in porous materials. Several materials have a significant number of micropores in the lower nanometre range leading to a reduction of gas diffusion (Knudsen effect). In the case of partial pore saturation during adsorption, the available pore space is further reduced, as is the gas diffusion. In this study, the influence of partially saturated pores on the Knudsen effect and on the gas diffusion is quantified. Three different pore geometries are investigated (slit, cylindrical and spherical pores) and three different types of pore size distribution, including a broad equal distribution, three narrow normal distributions and two measured distributions of concrete. Besides the intensive computation of the exact pore saturation, a simplified model with low computational requirements is suggested. This study shows that the influence of the water layer thickness on the effective diffusion becomes significant for pore radii below 50 nm and the assumed pore geometry is important. At the end, the overall effect is quantified for an amorphous material with most pore radii below 30 nm. At a moisture level of 50% relative humidity, the effective diffusion is reduced by 35% due to partial saturation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据