4.7 Article

Effect of size and orientation on stability of dislocation networks upon torsion loading and unloading in FCC metallic micropillars

期刊

ACTA MATERIALIA
卷 214, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.117010

关键词

Dislocation dynamics; Dislocation nucleation; Size effect; Plastic recovery

资金

  1. Oak Ridge Associated Universities (ORAU) Ralph E. Powe Junior Faculty Enhancement Program Award

向作者/读者索取更多资源

At micron and nanometer length scales, metals exhibit strong anisotropic behaviors. Three-dimensional dislocation dynamics simulations can be used to investigate the plasticity and microstructure evolution in metal micropillars of different orientations.
At the continuum length scale, mechanical properties of metals show relatively weak orientation dependence; however, they exhibit strong anisotropic behaviors as the size of sample decreases to micron and nanometer length scales. In this study, three-dimensional dislocation dynamics (DD) simulations are performed to investigate the orientation-dependent plasticity in submicron face-centered cubic (FCC) micropillars subjected to torsion. Accommodating results from atomistic modeling, updated surface nucleation schemes in DD models have been developed for three orientations ([001], [101], and [111]), allowing investigation of the dislocation microstructure evolution and the corresponding anisotropic mechanical response upon torsional loading and unloading. The DD simulation results show that the coaxial and hexagonal networks formed in [101] and [111] oriented nanopillars, respectively, exhibited excellent plastic recovery, while the rectangular network formed in the [001] crystal orientation was more stable and did not experience as much plastic recovery. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据