4.7 Article

Modeling solid solution strengthening in high entropy alloys using machine learning

期刊

ACTA MATERIALIA
卷 212, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.116917

关键词

High entropy alloys; Solid solution strengthening; Machine learning; Alloy design

资金

  1. National KeyResearch and Development Program of China [2016YFB0700505]
  2. 111 Project [B170003]

向作者/读者索取更多资源

This study developed a relationship characterized by the electronegative difference of elements to represent solid solution strengthening, and proposed a more superior model for predicting the solid solution strength/hardness of high entropy alloys, thereby accelerating the alloy design process.
Solid solution strengthening (SSS) influences the exceptional mechanical properties of single-phase high entropy alloys (HEAs). Thus, given the vast compositional space, identifying the underlying factors that control SSS to accelerate property-oriented design of HEAs is an outstanding challenge. In the present work, we demonstrate a relationship derived in terms of the electronegative difference of elements to characterize SSS for HEAs. We propose a model which shows superior performance in predicting solid solution strength/hardness of HEAs compared to existing physics-based models. We discuss applications of our SSS model to HEA design and predict alloys with potentially high SSS in the four alloy systems AlCoCrFeNi, CoCrFeNiMn, HfNbTaTiZr and MoNbTaWV. Our findings are based on the use of machine learning (ML) methods involving feature construction and feature selection, which we employ to capture salient descriptors. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据